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Design Study for a Mars Geyser Hopper 
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NASA Glenn Research Center, Cleveland, Ohio, 44135 

The Mars Geyser Hopper is a design reference missions (DRMs) for a Discovery-class 
spacecraft using Advanced Stirling Radioisotope Generator (ASRG) power source.  The 
Geyser Hopper is a mission concept that will investigate the springtime carbon-dioxide 
geysers found in regions around the south pole of Mars. The Geyser Hopper design uses 
Phoenix heritage systems and approach, but uses a single ASRG as the power source, rather 
than twin solar arrays, and is designed to last over a one-year stay on the South Pole. The 
spacecraft will land at a target landing area near the south pole of Mars, and have the ability 
to "hop" after a summertime landing to reposition itself close to a geyser site, and wait 
through the winter until the first sunlight of spring to witness first-hand the geyser 
phenomenon.  

I. Introduction 

A. The Design Reference Mission Process 
The NASA “Discovery” class mission is a series of small, cost-capped NASA missions that are led by scientists, 

and designed to accomplish specific, well-defined science objectives.  Since the first Discovery missions, the Near 
Earth Asteroid Rendezvous / Shoemaker probe in 1995 and the Mars Pathfinder in 1996, Discovery has been a 
highly successful program of innovative, science-driven spacecraft that have investigated targets as diverse as Mars, 
the moon, Mercury, comets, asteroids, and extrasolar planet detection. 

The NASA Discovery Mission site states1: 
NASA's Discovery Program gives scientists the opportunity to dig deep into their 

imaginations and find innovative ways to unlock the mysteries of the solar system. It represents 
a breakthrough in the way NASA explores space, with lower-cost, highly focused planetary 
science investigations designed to enhance our understanding of the solar system. 

NASA announced that missions to be proposed in response to the twelfth NASA Discovery mission solicitation 
in 2010 would be allowed to use the Advanced Stirling Radioisotope Generator (ASRG) power source2,3, which 
would be provided as government-furnished equipment for the mission.  The purpose of this was twofold: first, to 
use a Discovery mission as a demonstration flight of the ASRG, a power system design which has the possibility of 
producing a significantly higher amount of power from a smaller amount of radioisotope than early radioisotope 
thermoelectric generator (RTG) power systems; and secondly, to enable the low-cost Discovery class missions to 
access to a wide variety of new targets, including targets in the outer solar system, for which use of a radioisotope 
power system instead of solar arrays would be enabling.   

B. Mars Geyser Design Study 
The Mars Geyser Hopper is a design reference mission (DRM) for a Discovery-class spacecraft using Advanced 

Stirling Radioisotope Generator (ASRG) power source. The purpose of the Concurrent Multidisciplinary 
Preliminary Assessment of Space Systems (COMPASS) team DRM study is to provide design requirements for the 
integration of the ASRG into a mission and understand issues involved in use of the ASRG in the context of a 
mission design, and to explore the impacts of the use of an ASRG on a mission and the impacts of mission 
requirements on the ASRG4. 

After evaluation of the options, the COMPASS team elected to pursue a design of a Mars Geyser Hopper 
mission. This mission would land a spacecraft, which was capable of hopping at least twice from its landed location 
on the Martian South Pole. The science on-board would be capable of studying the geysers that appear in the region 
of the South Pole of Mars in the Martian spring when the temperatures raise, over a stay of nearly one Martian year 
on the South Pole. 

                                                             
1 Senior Research Engineer, Power and In-Space Propulsion Division, MS 301-3, AIAA Associate Fellow. 
2 Lead Engineer, Systems Analysis Branch, MS 105-3, AIAA Senior Member. 
3 Senior Engineer, Systems Analysis Branch, MS 105-3, AIAA Member. 
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The mission constraints for this design were that the mission is to meet the Discovery-mission life-cycle cost cap 
of no more than $425M (in FY-2010 dollars), not including the launch cost, and have a launch date no later than 
December 31, 2016.  In order to reduce the cost and minimize risk, the spacecraft concept was based on a previous 
spacecraft design, the Mars “Phoenix” lander5, which has a demonstrated flight heritage.  We make use of the fact 
that the Phoenix lander design incorporates soft landing capability and incorporates a restartable rocket propulsion 
system6, suitable to be repurposed for our requirements. 

II. Mission Concept 

A. Mars Geysers 
Images taken by the Mars Global Surveyor spacecraft in the region of the seasonal south polar cap of Mars 

showed interesting dendritic features, called “dark dune spots” or “spiders.”  These features occur on a region of 
Mars near the south polar, but not on the permanent polar cap, where the ground is covered with the seasonal polar 
cap of carbon-dioxide ice during the winter, but clear of ice during the summer. 

The origin of these features was originally mysterious; however, analysis of many thousands of these features 
shows that the features are apparently the trace left on the ground of carbon-dioxide geysers7,8.  During the polar 
winter, the regions in which these geysers form is glazed with a layer of carbon dioxide ice, which can be one meter 
or more in thickness.  The carbon dioxide ice is nearly transparent to sunlight, and hence when spring arrives in the 
southern hemisphere, and sunlight again illuminates the surface, the ice allows the incident solar energy to be 
transmitted the surface below.  The resultant heating of the surface below the ice causes the carbon dioxide to 
sublime from the bottom surface of the ice, where it is trapped by the overlying ice sheet, building up pressure.  
When sufficient pressure builds up, the ice sheet bursts, resulting in a brief “geyser” as the carbon dioxide trapped 
below the ice is released.   Carbon dioxide flows beneath the ice to the rupture location at speeds of up to 160 km/hr.  
This flow will entrain soil, basaltic sand, and other debris, which is blown into the atmosphere along with the 
escaping gas.  This plume of debris (primarily dark basaltic sand) ejected into the air falls back onto the surface 
creates the dark fan pattern (figure 1), while erosion due to this flow carves radial patterns (“spiders”) in the surface 
(figure 2).  Repeated imaging of the same area shows that the debris spots form in a period of weeks or less9. 

 This polar geyser phenomenon is unique to Mars.  While seasonal polar ice caps form on Earth as well as Mars, 
polar deposits in the Earth’s high latitude regions are composed of water ice, which into liquid upon being heated, 
rather than sublimating into a gas, and hence does not build up pressure.  As a phenomenon that is unseen elsewhere 
in the solar system, the Martian polar geysers are well worthy of further investigation. 

Yet investigation of these features will be extremely challenging.  The typical scale of one of the spider features 
is about 500 meters, requiring a high accuracy in placement to investigate the debris pattern and channel.   

The geyser phenomenon occurs following an extended period of complete darkness, and the geysers themselves 
occur at the beginning of 
polar spring, when 
temperatures are in the range 
of -150°C, and the sun angle 
is only a few degrees above 
the horizon.  The extreme 
environment, low sun angles 
during the geyser occurrence, 
and the fact that it would be 
desirable to emplace the 
probe well before the 
occurrence of the geysers, 
during a period of no 
sunlight, makes this a 
difficult environment for the 
use of solar arrays as the 
primary power source.  

Thus, this is an attractive 
mission for use of the 
radioisotope Stirling power 
source. 

 

Figure 1: Orbital view of geyser regions in the south polar area of Mars, 
showing dark spots (left) and debris fans (right) of material ejected from the 
geysers onto the light polar cap.  Image credit: NASA/JPL/Malin Space Science 
Systems. 
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Figure 2: A close-up view of a geyser-carved “spider” pattern at Martian latitude 86.4°S, as viewed by the Mars 

Reconnaissance Orbiter “HiRise” camera, showing channels carved into the surface after the seasonal ice has 
retreated. This feature is about 500 meters across. [Image from Hansen and McEwan, Reference 9]  
http://www.uahirise.org/images/2007/details/cut/PSP_005579_0935_cut_b.jpg 

B. Spacecraft 
The hopper mission concept is shown in figure 3.  The Geyser Hopper design builds on the Mars Phoenix Lander 

as a heritage system5,10, but uses a single ASRG2,3 as the power source, rather than the twin solar arrays used by 
Phoenix. The ASRG is currently undergoing space qualification and lifetime testing at NASA Glenn11. The 
spacecraft is shown in Figure 4 in its landed configuration.  Figure 5 shows the lander stowed into the aeroshell with 
the interplanetary cruise stage attached. 

The science instruments include stereo cameras to view the geyser events and a robotic arm (from Phoenix5) to 
dig beneath the soil surface and gather soil samples for chemical analysis on the Hopper. A light detection and 
ranging instrument (LIDAR), a landing camera and a thermal spectrometer (for remote geological analysis as well as 
weather sensing) are included. The target-landing site is on the South Pole, a region where geysers exist over a 
stretch of several hundred kilometers with densities of at least a geyser every 1 to 2 km. 

Design details of the spacecraft, along with a discussion of the mission criteria and the DRM design process, are 
found in reference [4]. 

 
Figure 3: Mission concept summary. 
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Figure 4 (left): Mars Geyser hopper shown as deployed on Martian surface, with sampling arm extended. 
Figure 5 (right): Mars Geyser hopper shown inside the entry aeroshell (bottom) with the interplanetary cruise 

stage (top) attached (bioshield and insulation not shown). 

III. Mission  

A. Mission Overview 
The Mars Geyser Hopper is a mission concept that will make a detailed investigation of one of the thousands of 

springtime geysers around the south pole of Mars. 
The mission concept is: 
1. The spacecraft will enter the atmosphere, and make a rocket-powered soft landing in a region of the South 

Pole where geysers are known to form.  This landing will take place during the polar summer, when the surface is 
free of ice.  The predicted landing ellipse is 20- by 50-km around the nominal landing site, and hence the landing 
will be targeted to a region, and not to a specific geyser location.   

2. During the first landed science phase, the lander will conduct science operations to characterize the landing 
site, to understand the surface geology of the area during the ice-free summer period.  Images taken during descent, 
as well as surface images, orbital images, and radio-signal tracking, will identify the landing location precisely.  
From this location, orbital images will be used to identify a nearby location where the signature of a geyser can be 
found. 

3. The spacecraft will stow its science instruments and re-ignite the engines for a first hop of a distance of up to 2 
km.  This hop is designed to place the lander in a location where it can directly probe the geyser region, examining 
the surface at a spot where a geyser had been.  The flight also will move the spacecraft closer to the region for the 
winter-over site. 

4. During the second landed science phase, the lander will conduct science operations to characterize a geyser 
site during the summer period.  Images taken during the flight will identify the landing location to within meter 
accuracy, allowing very precise targeting of the next hop.  

5. The spacecraft will stow its science instruments and re-ignite the engines for a second hop, a distance of ~100 
meters.  This hop will place the lander onto the winter-over site, a spot chosen to be a relatively high elevation 
where the geyser can get a good view of the surroundings, close to but not located on the site of a known geyser, and 
outside the fall-out pattern of the expected debris plume. 

6. The spacecraft will characterize the local area during the remaining sunlight, and then go into “winter over” 
mode.  Waste heat from the ASRG will insure that the lander itself will remain ice-free during the winter.  The 
lander will continue to transmit engineering status data and meteorological reports during the winter, but will not 
conduct major science operations. 

7. On the arrival of polar spring, the lander will observe the geyser phenomenon from the location selected for 



paper AIAA-2012-0631, 50th AIAA Aerospace Sciences Conference, Nashville TN, January 9-12, 2012 

 
American Institute of Aeronautics and Astronautics 

 
 

5 

optimum viewing. 

8. Following the geyser-season observations, the prime mission is completed.  Extended mission operations, if 
desired, would continue the observation through a full Martian year and into the second Martian summer. 

B. Hop Details 
A key element of the spacecraft is that it will have the ability to hop after a summertime landing to reposition 

itself close to a geyser site, and wait through the winter until the first sunlight of spring to witness first-hand the 
geyser phenomenon. The ability to “hop” after a propulsive soft landing was done once before, on the Surveyor-VI 
lander on the moon in 1967.  The 300-kg landed mass of the Surveyor-VI is about 20% less than the mass of the 
lander assumed here. 

The hop is done using the same engines that are used to accomplish the soft landing, similar to those used on the 
Phoenix lander6.  Since the engines are pulsed hydrazine monopropellant engines, restart capability is already 
incorporated into the design.  The spacecraft must be modified to ensure that the engines are preheated before the 
flight, and the thermal system is designed so that the hydrazine propellant is kept liquid at the approximately -75 °C 
ambient temperature of the polar summer.   (However, note that the engines and fuel are not intended to operate 
after the Martian winter, where ambient temperature falls to -150°C or below; they will be used only during the 
much less stressful summer.) . 

The vehicle is assumed to be capable of performing up to two hops, the first hop to bring the Lander to the 
region of interest for characterization of the geyser fields during the summer, and a second smaller hop to take the 
Lander to the final “winter over” site, where it is in view of, but not directly over, a geyser site. In additional a “fine 
tune” hop to optimize the landing site may be done if fuel margins permit.  

To obtain an estimate of how much propellant would be consumed for the two hops, each hop was modeled in 
the Mission Analysis and Simulation Tool in Fortran (MASTIF) program. The hops were modeled in 3 Degrees of 
Freedom (DOF) with open loop control. The burn times were adjusted until the required distance for each hop was 
achieved. The following is a description of how the hops were modeled: 

• Two second vertical rise 
• Thrust at a 35° angle relative to local vertical 
• Ballistic coast 
• Orient thrust vector to cancel horizontal velocity 
• Vertical descent for soft landing 
• A constant atmospheric density of 0.017314 kg/m3 was used in the analysis of the hops. 
For each hop, an amount of propellant equal to the expected usage plus reserves is determined. Table 1 shows 

the results for the two hops that were modeled.  These distances are the science minimum values.  Since the hop 
propellant is stored in the same tank that was used for landing, the vehicle will also have available any unused fuel 
from the landing.  The landing propellant requirements incorporate 30% reserves, and thus the actual hop distance, 
assuming a nominal landing, will be considerably greater. 

At the landing, and after each hop, the engineering team will assess the amount of propellant left in the tanks to 
determine the allowable hop distance; thus, the propellant reserves from each preceding engine firing can be added 
to the allowable use, and thus if the mission is nominal, and does not require digging into the reserves, longer 
distances can be planned on later flights.   Alternately, if fuel margin is high but longer distances are not required, a 
short final hop can be added into the plan, in order to “fine tune” the winter-over site to the optimal location. 

 
 Hop 1 Hop 2 
Distance, km 2.0 0.1 
ΔV (m/sec) 248 60 
Massinitial, kg 500 452 
Massfinal, kg 452 440 
Propellant consumed, kg 48 12 

Table 1—Propellant consumed for each hop 

C. Spacecraft mission design criteria and science instrumentation 
This mission is subject to some challenging requirements on the ASRG system, including planetary protection, 

dusty environments and use in a planetary-entry aeroshells. 
The science instruments include stereo cameras to view the geyser events and an arm (from Phoenix5) to gather 

soil samples for analysis on the Hopper. A LIDAR, landing camera and thermal imager (for remote weather sensing) 
is included. The target-landing site is on the South Pole where fields of geysers exist across an extent of hundreds of 
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km with densities of at least a geyser every 1 to 2 km. Since the landing ellipse is assumed to be 20 by 50 km 
(assumed to be identical to the MSL error ellipse12) the hopper is equipped with an additional 80 kg of hydrazine 
propellant.  This allows the landing engines to be reused after landing, to hop at least 2 km to be close to a geyser 
site for imaging in the spring. The hopping system reuses the Phoenix landing propulsion system10 and counts on 
orbital imaging spacecraft (which also provide for UHF relay of telemetry and science data) to accurately locate a 
geyser location within range of a rocket-propelled hop. Even though the hop will be made before the end of summer, 
sufficient heat (taken from the ASRG waste heat) will be needed to keep the hydrazine tanks and fuel lines warm 
due to the south pole’s low ambient temperature. 

Table 2 summarizes the main factors of the spacecraft design. 
 

Subsystem area Details Total mass with 
growth 

Top level system Investigate some of the thousands of springtime geysers around the South Pole 
of Mars over a 1 Mars year stay on the South Pole. This mission will provide an 
example of an ASRG mission. 

1092 kg  
(including 207 kg 
growth) 

Mission, operations, 
guidance, navigation 
& control (GN&C) 

Design based on Mars Phoenix, highly symmetric for minimal solar torques, 
three-axis stabilized ballistic entry at Mars, Sun sensors, Star Trackers (on 
cruise deck), IMU, Landing radar (on lander) 

8 kg (cruise deck)  
+ 17 kg (hopper) 

Launch Launch March 2016, (date set by Mars launch window and requirement to land 
during Mars southern summer) 

 

Launch Vehicle Atlas V 401 direct to declination of 47.5° and C3 = 13 km2/s2  
Science Geyser science: cameras, LIDAR, MastCAM, Landing science: Descent imager; 

microscopic imager; meteorology package, chemical analysis package, robotic 
trenching tool, drill. 

34 kg 

Power Fixed solar array mounted to cruise deck to provide 150 W, One ASRG on 
Hopper for 133 W, Li-ion battery on Hopper. 

6 kg (cruise deck),  
126 kg (hopper) 

Propulsion Hopping propulsion based on Phoenix landing system. Integrated hydrazine 
monopropellant blow-down system; 15 Aerojet MR-107N thrusters with Isp = 
230 sec for landing and hopping. RCS is four pairs of Aerojet MR-103D 
thrusters at 215 sec Isp, and one Aerojet MR-102 thruster at 220 sec Isp.  

62 kg (dry)  
+ 191 kg (propellant) 

Structures and 
 mechanisms  

Lander: composite sandwich structure deck. Hexagonal tubular space frame, 
2090-T3 Al allow. 

166 kg (cruise deck)  
+ 178 kg (aeroshell) 
+ 58 kg (Hopper) 

Communications X-band direct to Earth (DTE) on cruise deck for transit comm., UHF antenna on 
Hopper to communicate through TBD Mars orbiting relay sat. 

16 kg (cruise deck)  
+ 7 kg (hopper)  

Command & data 
handling (C&DH)  

All located on Lander/hopper. Two Flight computers, two data acquisition units, 
100 GB data storage. 

29 kg 

Thermal RHU provides primary heat; aerogel foam, radiator with louvers, cold plates with 
heat pipe connections to radiator. Radiators sized for thermal on cruise deck 
and then for thermal on Hopper inside the entry aeroshell. 

77 kg (Cruise deck)  
+ 35 kg (aeroshell) 
+ 18 kg (hopper) 

Cost Discovery Cost Cap: $425M (does not include launcher, ASRGs are GFE) $350M 
Table 2: Mission and Spacecraft Summary 
 
Power requirement estimates show that a single ASRG is sufficient (assuming 30% growth on power 

requirements) given the same large Li-ion battery pack (from Phoenix) to provide peak powers for periodic high-
power propulsion and science events. This single ASRG is place on the top deck of the hopper with the majority of 
cooling provided by pumped loops which take the roughly 350W of thermal waste heat to keep the hopping 
propulsion system warm as well as the rest of the spacecraft. These loops terminate in vertically hung (to reduce 
dust degradation) radiators around the edges of the spacecraft. These radiators will also ensure that the hopper 
spacecraft will not be covered in the 1m or so depth of CO2 ice from the atmosphere that ‘snows’ out of the 
atmosphere during the winter months.  

Perhaps the most challenging part of the geyser hopper design is planetary protection. Since the hopper has two 
plutonium General-Purpose Heat Source units and lands on the South Pole, which has subsurface water (considered 
a “special region” in the planetary protection protocol), a risk may exist for a non-sterilized spacecraft to introduce 
life to Mars in the event of a failure. Several approaches to spacecraft sterilization were explored but it was decided 
that the entire hopper and aeroshell would need to be sterilized. Past experience with Viking provided for heating the 
entire aeroshell/lander combination (with two RTGs installed (but cooled) inside of a bioshield, which is not 
jettisoned until after launch. Due to heat limits on certain portions of the ASRG, in addition to other factors an 
approach to utilize vapor hydrogen peroxide (VHP) to sterilize the entire hopper/aeroshell and place it in a bioshield 
was created.  
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The launch mass of the hopper design fits easily on an Atlas 401 launcher. Given the launch margin it may be 
possible to launch a second spacecraft (i.e., a secondary or “ride-along” spacecraft, funded by another program) 
below the Geyser Hopper.   Initial cost estimates of the Geyser Hopper show a cost estimate of $350M with 25% 
margin for everything except launch services, the ASRG and the planetary protection system. This is well under the 
Discovery mission cost cap. 

IV. Mission Profile 

A. Interplanetary Cruise 
The Earth-to-Mars 2016 mission window was assumed. The Earth-Mars trajectory was optimized such that Earth 

Departure C3 as well as Mars arrival excess speed were minimized.  
This chemical trajectory mission was optimized using Copernicus, a generalized trajectory design and 

optimization program. The Earth to Mars trajectory is modeled such that the spacecraft is injected by the Atlas 
booster directly into the Earth to Mars transit orbit on March 1, 2016, and arrives at Mars Entry Interface (EI) 260 
days later, October 8, 2016. Entry Interface was defined such that the spacecraft would not exceed acceleration loads 
and aeroshell heating loads. 

Earth Departure parameters:  
• C3 = 13 km2/s2 
• Dec = 47.5° 
Launch performance was extrapolated from the NASA ELV Performance Estimation Curves to a C3 of 13 

km2/s2 at the required declination. The Atlas V (401) prediction for a DLA of 1255 kg is conservative (due to the 
southerly launch azimuth) but the Mars Geyser Hopper total wet mass (1092 kg) still fits with margin of 163 kg 
(which translates to a 15% ELV margin). 

A directed entry into the South Pole was examined in the design of the aero-entry maneuver at Mars. A Southern 
entry was selected instead of a Northern Entry because it allows for shorter range and steeper flight path angle at 
entry. Shorter ranges at steeper flight path angles are desirable in order to reduce the size of the landing zone error 
ellipse at the South Pole.  

It was necessary to add a trajectory correction maneuver (TCM) of 61 m/s just prior to reaching entry interface in 
order to achieve an entry velocity of 6.25 km/s. Allowing a steeper flight path angle reduces the magnitude of this 
correction maneuver but also increases acceleration loads on the vehicle. This burn was modeled impulsively within 
Copernicus. 

After interplanetary cruise, the spacecraft reaches Mars atmospheric entry interface at an altitude of 125 km 
above the planet’s surface. This altitude represents what is historically considered the start of the Mars Entry 
Descent and Landing (EDL) trajectory.  

B. Entry, Descent and Landing (EDL)  
After performing a burn to slow down the entry velocity, the aerobraking shell performs the atmospheric entry 

maneuver and slows down the descent of the Lander/Hopper.  
The EDL section of the spacecraft trajectory allows the spacecraft to decelerate from orbital velocities to a state 

that allows the Geyser Hopper’s engines to land safely on the Martian surface. At atmospheric interface, the vehicle 
has an entry velocity of 6.25 km/s at a flight path angle of approximately –11° relative to the local horizontal. With 
these entry conditions, a MATLAB tool designed for basic EDL analysis was used to develop a trajectory for the 
Geyser Hopper EDL. This tool provides information for the hypersonic and supersonic regions of flight.  

Mars entry parameters: 
• Altitude = 125 km 
• Entry velocity = 6.25 km/s 
• Flight path angle = –11.0° 
• Azimuth = 0.0° 
• Downrange from Pole = 1090 km 
Based on aerodynamics of the Phoenix entry body13, a constant coefficient of drag (CD) of 1.6 is assumed for the 

hypersonic and supersonic regions of flight. In reality, CD changes with Mach number but the approximation of 
constant CD was necessary due to the fidelity of the tool used. Comparisons have been completed using the Phoenix 
mass and entry conditions to determine the accuracy of this simplified simulation.   

Three important parameters are determined from the entry trajectory: peak deceleration of 5.6 times (Earth) g; a 
peak heat rate 61.3 W/cm2; and a total heat load of 4,886 J/cm2.  The peak deceleration is less than the peak 
deceleration of nine-Earth g seen by the Mars Phoenix13, allowing the currently designed EDL structures to be used. 
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However, both the peak heat rate and the total heat load are higher than those on the Phoenix trajectory, which had a 
peak heat rate of approximately 47 W/cm2 and heat load of 2428 J/cm2. The differences in these parameters are 
predominantly from the higher entry velocity of the hopper mission of 6.25 km/s compared to the 5.59 km/s Phoenix 
entry velocity. This velocity also necessitates the use of a less negative flight path angle to control peak deceleration 
loads. However, the lower flight path angle, and higher heating rates result in a longer trip through the atmosphere 
and a higher total heat load. A predicted landing ellipse of at least 20- by 50-km around the nominal landing site 
would be expected if the entry is identical to the error ellipse of the Phoenix EDL systems. However, the decrease 
made to entry flight path angle may increase landing ellipse length.  

The large increase in peak heat rate is not expected to be a design issue since SLA-561V, the ablative material 
used for the Phoenix aeroshell13, has been used at heat rates upwards of 100 W/cm2 in past missions landed on Mars. 
The higher total heat load will necessitate a thicker layer of ablative heat shield material.  

For Mars entry, checks are performed to ensure that the trajectory passes through the acceptable region of 
parachute deployment conditions for the Disk-Gap-Band parachute currently used for all Martian EDL systems. 

Following entry, the heat shield is jettisoned and the parachute deployment further slows down the 
Lander/Hopper on its descent. The parachute and backshell are then jettisoned, and the main propulsion system 
performs a powered landing with total ∆V of 248 m/s. 

The mission timeline from launch through the beginning of landed operations is shown in Table 3: 
 

 Operations Time Line: launch, cruise, and EDL  (For the timeline, E = Entry, and L = Landing) 
 Launch—March 1, 2016 (Phase E begins) 
 Cruise 
− Perform any necessary midcourse Trajectory correction burn(s) 
− Entry burn; orient for aero descent 
 EDL operations October 8, 2016 
− Final EDL parameter update—E-3 hr; Entry state initialization—E-10 min 
− Cruise stage separation—E-7 min 
− Entry Turn Starts—E-6.5 min; Turn completed by E-5 min 
− Entry—E-0 s 
− Peak heating 
− Parachute deployment—E+221 s 
− Heat shield jettison—E+236 
− Leg deployments—E+246 s 
− Radar activated—L-143 s 
− Lander Separation—L-42 s 
− Gravity turn start—L-39 s 
− Constant velocity start—L-18 s 
− Touchdown—L-0 s 
− Dust Settling—L+ 15 min 
− Reconfigure as required; deploy antenna and establish communications; transmit health status 
− Landed mission begins 
Table 3: Mission timeline (launch through start of landed operations) 

C. Science Operations Timeline 
Once landed, the science instruments onboard evaluate the landing site, and prepare for the powered hopping 

maneuver to a new science-determined landing site. There is sufficient propellant onboard for a second, smaller hop 
maneuver in order to allow for science readings to be taken in a second location on the Martian South Pole once the 
first location has been investigated. 

The primary mission duration, starting from launch, is 30 months, comprising 8 months of interplanetary cruise 
followed by a primary mission of 22 months (one Mars year) on the surface. The timeline of science operations is 
shown in table 4. 

Immediately after landing, there are four Science Operations Phases: Initial Landing Site Operations terminated 
by the “hop” to the Summer site; Summer site Operations, including an optional “Summer site Fine-Tuning Hop” 
and terminated by a “hop” to the Winter-Over Site; the Winter-Over Site Operations, and the springtime Geyser 
Operations phase. Science Concept of Operations for each phase is described below. 
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Science Operations Time Line 

 Characterize initial site— October 8, 2016—107 day duration 
− Phase-1 science; characterize landing site and select site for summer science operations 
 Hop 1—summer science site—January 23, 2017—60 day duration 
− Hop 1 maneuver 
− Reconfigure as required; deploy antenna and establish communications; transmit health status 
− Observe local region 1; relay and archive data 
− Process data; choose next “fine tuned” science site (if necessary and fuel permitting) 
 Hop 1a—”fine tune” hop, if necessary and fuel permitting—February 8, 2017 
− Perform Hop maneuver 
− Reconfigure as required; deploy antenna and establish communications; transmit health status 
− Observe local region 1a; relay and archive data 
− Process data; choose final science site 
 Final Hop—winter-over site—March 25, 2017—40 day duration 
− Perform hop maneuver 
− Reconfigure as required; deploy antenna and establish communications; transmit health status 
− Observe local winter-over site; relay and archive data 
− Process data 
 South Pole Winter observations—May 6, 2017, 376 day duration 
− Perform Meteorology and climate science 
− Relay data 
 Detection and Science Observations of Geysers—May 14, 2018—90 day duration 
− Await the Spring thaw 
− Detect geysers 
− Observe and acquire and relay data 
− Primary mission completed—August 10, 2018 
− Send final data archive to Planetary Data System (PDS): following end of mission 
 Extended mission, (optional)—August 11, 2018—unknown duration 

Table 4:  Science Mission timeline 
 

1 Landing—Initial Landing Site Operations 
Once the vehicle lands, it performs self-diagnostics, relaying all health data to the Science Center.  Vehicle 

systems are initialized, and articulation of landing arm is tested, then the arm is stowed into “hop” configuration to 
prepare for the first hop to the summer science site. 

The spacecraft is oriented using on-board Inertial Measurement Unit (IMU) and GN&C, combined with imaging 
data from both the downward-looking camera and site images using the multi-spectral camera. The vehicle's initial 
landing site position is independently confirmed with orbiter images.  Imaging (and all data relaying) is coordinated 
with Mars Orbiter operations team.   Direct to Earth communication will be maintained, but this will be a lower data 
rate than the orbital UHF link. 

For the science operations at the initial landing site, the landing site chemistry and geology is surveyed using the 
multispectral camera and the mini-Thermal Emission Spectrometer (TES), a scanning infrared spectrometer system 
previously flown on the MER mission. This will be the first landing ever on the pole of another planet, and the local 
geology of the region is expected to quite different from that of any earlier landing sites on Mars.  Characterization 
of the initial landing site, to understand polar processes and geology on Mars, is a major scientific objective. 

Meteorology and climate studies at this site will also be a primary scientific objective.  Data from this site will 
fill in our knowledge of Martian atmospheric processes.  Atmospheric measurements will be monitored with the 
mini-TES, allowing remote measurement of surface temperatures as well as altitude profiling of atmospheric 
temperature14. Barometric pressure is monitored, and wind speed is measured using the LIDAR. Atmospheric Argon 
composition is analyzed with the Alpha Particle X-Ray Spectrometer (APXS) instrument, allowing diagnostic 
measurement of the atmospheric mixing during the condensation of carbon dioxide at the pole. 

Since the actual geyser locations and associated debris fans cover only a small fraction of the landing error 
ellipse, it is unlikely that the initial landing site will be at a location to characterize the landform at a geyser location.  
The hop to the summer site will be selected for this purpose.  (Alternately, if the initial landing happens to be at a 
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location to characterize a geyser trace,  the summer site could be selected to characterize a site that does not show 
the traces of geyser activity.) 

The summer site is selected during this time, based on a trade-off of between distance (closer is better), low risk 
from obstacles (boulders, hills), and proximity to promising geyser fields. The summer site must also have good 
accessibility to a good candidate winter site. Planning includes a comparison of line-of-site images with images 
taken during descent and also existing images from orbiters. An optimal trajectory is chosen, and then the “hop” 
maneuver to the summer site is executed. 
2. Summer Site Hop and operations 

Once again, on landing the first task is to orient again, to know exactly where the landing site is, based on 
surface images from the site, as well as orbital images if available. The science team will decide if this is good 
summer site, or if there is a desire for a fine-tune hop. Is this best spot for summer science? How good is the science 
traded against risk and fuel and so on? If the observations reveal a superior site at a short distance away, a fine-tune 
hop is requested, the engineering team will evaluate the vehicle health as well as fuel margins and, if they are 
determined to be adequate, release any fuel margin reserved for this hop. 

Science operations: 
 Take surface images of landing site. 
 Unstow the arm, dig, do chemical analysis of samples. Relay data; analyze, validate and archive data. 
 Do optical spectroscopy with camera and infrared spectroscopy with mini-TES 
 Do atmospheric science. 

Based on the information from the surface as well as orbital information, the team will review winter site 
selection, with new information about fuel margin, and local images from summer site—also incorporating the 
considerations of safety; proximity to, but not on top of a geyser.  The site preference will be for high ground, to get 
better line-of-view, allowing the spacecraft to see more geysers. With the final selection of site, the spacecraft will 
do the last hop. 

 
• Phase 1: Initial landing site science (107 days) 
− Primary Science Goal: Science of polar region landforms.  Characterize initial landing site with 

multispectral camera and mini-TES infrared spectrometry  
− Secondary Science: Atmospheric science 
− Engineering goal 
•  Locate landing site in orbital images; select next landing site, prepare for first hop 
 Phase 2: Summer science (60 d) 
− Science goal: Characterize geomorphology and geochemistry of geyser site during summer 

(nongeyser) season 
− Secondary Science: Polar stratigraphy (measure depth and layers of ice); atmospheric science 
− Engineering goal 
• Locate landing site and select winter-over (final) landing site, prepare for second ‘adjustment’ hop 
− Optional engineering goal 
•  Decide if a “fine tuning” hop is needed to optimize landing site, and if so, prepare for and 

execute second hop 
 Phase 3: Characterize final site (40 d) 
− Science goal: Characterize the winter-over landing site before sun is gone. 
− Secondary Science: Atmospheric science  
− Engineering goal” 
•  Preparations for winter 
 Phase 4: Winter-over science (1 yr) 
− Science goal: Atmospheric science (meteorology and climate science) during Martian winter 
− Engineering goal 
•  Survival 
 Phase 5: Geyser science (90 d) 
− Science goal: Observe geysers 
− Secondary Science: Atmospheric science 
− Engineering goal:  
•  Maintain spacecraft health and data downlink 

Table 5: Science observation goals for each phase of the landed mission. 
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3. Winter-Over Site 
At the final site, we use local and orbital images to determine our precise location again, then do local 

observations; and characterize the site—photography, spectroscopy—before the sun sets below the local horizon for 
the long winter darkness. Chemical will be done analysis, if time permits, but this is secondary science, since the 
lander is not on a geyser field area. The spacecraft then prepares to winter as necessary. 

As winter arrives, we transition to winter mode operations, where the lander will continuously do meteorological 
observations and relay data home to archive all winter.   During this period the visibility of the Earth will be poor, 
and the data relayed through an orbiting spacecraft.  Waste heat from the isotope power source will prevent ice 
accumulation on the spacecraft. 
4. Geyser Observations 

After the winter, the science observations of the geyser field begin again at the approach of the spring thaw. The 
expected area of geyser activity is continuously scanned with wide-angle camera. Automated geyser detection on-
board the spacecraft will scan the environment; although the routine imagery will be buffered on the spacecraft, 
images will not be relayed to Earth until the spacecraft detects a geyser. This triggers high-speed, hi-resolution 
imagery, including LIDAR characterization of particle motion and infrared spectroscopy. All data is stored for relay 
to Earth. Simultaneously, the science instruments will do chemical analysis of any fallout particles spewed onto the 
surface of the lander. Geysers erupt at a rate of about one a day during peak springtime season. If more than one is 
detected simultaneously, the spacecraft algorithm will focus on the nearest or “best”. 

The lander will continue this primary geyser science for a period of about 90 days. Tens of geyser observations 
are expected over the spring/summer season. 
5. Primary mission ends.  

Science Mission observations end at end of geyser season, and the data will be calibrated, validated, and 
archived at the Planetary Data System. This may optionally be followed by an extended mission to observe the polar 
region into a second Martian autumn. 

Table 5 shows the science goals for each location. 

V. Spacecraft and Margins 

1. Spacecraft Cruise Configuration 
The basic Geyser Hopper configuration was based on the Mars Phoenix Lander5 (which was itself based on the 

Mars-98 Surveyor Lander/Mars Polar Lander 
design), modified for mission-specific design 
differences.  The use of a heritage design with 
previous flight experience reduces the risk.  The 
launch and cruise configuration consists of the Mars 
Geyser Hopper stowed within the entry aeroshell 
with a cruise deck mounted on the outside of the 
aeroshell. The aeroshell design is identical in size to 
that used for the Mars Phoenix Lander, while the 
cruise deck structure is modified to account for the 
difference in the launch vehicles between the two 
missions, since the cruise deck provides the 
structure to mate directly to the payload adaptor.  

The overall dimensions of the Mars Geyser 
Hopper in its stowed and cruise configurations are 
shown in Figure 6. The radiators required to reject 
the heat of the ASRG contained within the aeroshell 
and the heat of the avionics of the Lander/Hopper 
dominate the surface of the cruise deck at 1.43 m2, 
while the aeroshell diameter is only 2.65 m. Given 
these dimensions, the entire stack can easily fit 
within the 3.65 m envelope of the Atlas V 4-m LPF 

Figure 6: Dimensioned drawing of Mars Geyser Hopper 
interplanetary cruise stage and aeroshell. 



paper AIAA-2012-0631, 50th AIAA Aerospace Sciences Conference, Nashville TN, January 9-12, 2012 

 
American Institute of Aeronautics and Astronautics 

 
 

12 

(large payload fairing). The solar arrays are folded for launch. Figure 6 also shows the cutouts that are required on 
the backshell of the aeroshell to allow the attitude control and mid-course correction thrusters, which are integrated 
with the Lander/Hopper, to be fired during the cruise and descent as needed prior to the backshell being jettisoned. 

Primary functions of the cruise deck include providing structure for mating the aeroshell to the Payload Adaptor, 
providing 1.15 m2 of solar array area to produce the additional power required during cruise, providing the required 
communications during the cruise phase, providing the star trackers and Sun sensors the required view for guidance, 
navigation and control during the cruise stage, providing a location for the secondary battery used prior to starting 
up the ASRG, and providing the required 1.43 m2 of radiator area for rejecting the waste heat from the ASRG and 
solar array and other components contained on the Lander/Hopper while enclosed in the aeroshell. 

2. Spacecraft Landed Configuration 
Figure 7 shows the spacecraft in its landed configuration.  The deck stands 0.66 meters above the surface, while 

the stereo imaging system and science instrument mast extends to a maximum of 2 meters above the surface.  The 
robotic digging arm (shown in the figure in an unstowed configuration) has the capability of extending out as far as 
2.5 meters from the hopper’s deck, and sufficient flexibility to examine the terrain under the lander, and inspect 
much of the bottom surface. 

 

 
Figure 7: Height and footprint diameter of the Mars Geyser Hopper while deployed on the surface (insulation 

covering the ASRG and propellant tank not shown for clarity) 

2. Mass and Power 
1. Mass Growth and Margin 

A significant part of the design exercise was to incorporate realistic growth, contingency, and margin in all 
systems.  These used AIAA Standard AIAA S–120–2006, Standard Mass Properties Control for Space Systems15, in 
which the percent mass growth matrix is specified by level of design maturity as a function of the specific 
subsystem. Mass Growth Allowance (MGA) is defined as the predicted change to the basic mass of an item based 
on an assessment of the design maturity and fabrication status of the item, and an estimate of the in-scope design 
changes that may still occur. 

The percent growth factors are applied to each subsystem, after which the total system growth of the design is 
calculated. The COMPASS design team standard operation is to design to a total growth of 30% or less. An 
additional growth is carried at the system level in order to add up to a total system growth of a maximal 30% limit 
on the dry mass of the system. Note that for designs requiring propellant, growth in propellant is either carried in the 
propellant calculation itself or in the ΔV used to calculate the propellant required to fly a mission, but not both.  
Since propellant (delta-V) growth is accounted separately, the convention for referencing basic mass and growth is 
applied to the basic dry mass, not to the total mass. 
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2. Master Equipment List (MEL)  

Table 5 lists the top level of the Master Equipment List (wet mass) of the design with all the subsystem line 
elements hidden such that only the top-level masses are shown. The total growth on the dry mass of the spacecraft is 
then rolled up to find a total growth mass and growth percentage. The MEL incorporates the Current Best Estimate 
(CBE) mass of all of the items into totals and calculates a total CBE mass, a total spacecraft mass and a total growth 
mass. 

 

  
Table 5: Master Equipment List, incorporating current best estimate (CBE), growth and margins 
 
3. Power  
The single ASRG located inside the aeroshell on the Lander vehicle is capable of producing 133 W of power3 for 

the surface operations. A battery is available onboard for use during Entry/Descent/Landing (EDL) as well as during 
the hops when there is a short duration requirement for additional power. During the cruise mode of the mission, 
when there will be continuous power requirements for the electronics systems (avionics, GN&C) as well as regular 
communications (at least one hour out of every day), a solar array on the cruise stage will supply approximately 150 
W. This array will then be jettisoned with the cruise deck during EDL at Mars. The single 133-W ASRG on the 
Hopper is enough to handle the surface operations and science (123 W) and still have 10 W available as a trickle 
charge to the battery. This additional battery is included on the Hopper/Lander to supply the spike in power for the 
thrusters during EDL breaking for soft landing, and during the two hops. 

The COMPASS team typically uses a 30% total growth on the bottoms-up power requirements in modeling the 
power system. 

 
4. Thermal Waste Heat 
Thermal waste heat generated by the components of the spacecraft (in all three elements: aeroshell, cruise deck 

and hopper/lander) was also calculated and used by the thermal subsystem designer in sizing the thermal subsystem 
elements. The thermal system has been sized to radiate the power in the three different stages based on the power 
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requirements to the vehicle when those stages are in use. For example, the cruise deck is operational only during 
Power Mode 1. During this mode, a radiator on the surface of the cruise stage is sized to radiate the waste heat 
generated by the ASRG as well as the electronics on the hopper and the cruise deck. Similarly, the radiators on the 
Hopper itself are sized to radiate the waste heat from the ASRG itself as well as the electronics. 

The waste heat from the ASRG has a secondary use; it will be used to keep the hopper vehicle itself from being 
buried under the seasonal ice during the polar winter.  Thermal calculations show that the radiated heat from the 
lander should be sufficient to keep the lander, and a portion of the surrounding terrain, warm enough to remain free 
of ice. 

3. Communications 
In the landing site at or near the South Pole of Mars, the vehicle can only see the Earth periodically. During the 

Martian winter there is no contact with Earth for ~½ of a Martian year. In the spring and fall of the Martian year 
there may be periodic viewing of the Earth each Martian day. During the summer of the Martian year the Earth will 
be in view continuously during the Martian day. 

These long periods of no contact with Earth demands that, if Direct to Earth (DTE) communications is used, the 
Lander must have the ability to store critical information for transmission to Earth at a later time. This leads to an 
estimate the amount of critical data to be stored. Fortunately, the long time periods with minimal Earth 
communication contact correspond to time periods of minimal data activity.  A total of 98.2 MB of storage is 
required for the winter observations; the 1 GB of storage assumed will be more than adequate for this time period. 
As the Earth comes up over the Martian horizon and the Martian spring initially approaches, the Earth is only visible 
for a few minutes or hours a day. It is assumed that the stored data will be downloaded over the days that have a 
total of 10 hr available for communication to Earth. The required data rate is 22 kbps. Over the course of the 
mission, the distance between the Earth and Mars varies from 0.37 to 2.7 A.U. These assumptions lead to the link 
calculation using some reasonable assumption on antenna size, frequency, and power. The link budget analysis leads 
to an acceptable transmit power and a reasonable size antenna only when the Earth and Mars are closest to each 
other. 

During the main part of the mission, it is required that the lander observe the eruption of the geysers and then 
sending back science data and high-quality images.  To assess the data needs, some assumptions must be made on 
the frequency and the duration of the eruptions.  The desired image quality is HDTV quality, 30 frames/second, 
1280 by 720 pixels, at 24 bits per pixel, for an assumed 30 second duration of eruption.   (Lower quality images can 
hence be taken at a longer duration; e.g., 60 seconds of imagery at 12 bits per pixel).   

The data rate required for clips at HDTV resolution exceeds the available bandwidth for the direct-to-Earth 
transmission; there is no combination of antenna size, transmit power, or Mars to Earth distance that gives a 
reasonable power and antenna size to support even the lowest data rate of compressed HDTV. Even if new video 
codex will deliver HDTV in as little as 6 Mbps, the amount of power required to transmit directly to Earth is 
prohibitive. 

Thus, the mission design assumes, in addition to the DTE communications link, use of a UHF orbital relay of 
telemetry to download the science data. Use of a UHF relay was the communications strategy used for the Mars 
Phoenix mission as well16,17.  Mars orbiters are typically placed into near-polar sun-synchronous orbits, and hence 
the availability of the line of sight to an orbiter from the south polar landing site is excellent, with multiple 
overflights from each orbiter every day.  Spacecraft that are currently in orbit around Mars (e.g., MRO17, Mars 
Express) incorporate the capability to relay data from surface landers.  However, since the mission arrival date in 
2016 is beyond the currently extended mission lifetime of existing Mars orbiters, this assumes either that additional 
extensions to their missions will continue to maintain these orbiters in operation as relays, or assumes future orbiters 
will have relay capability available.  

4. Launch Date 
The launch date was set by the combined requirements for a direct injection trajectory to access the south pole of 

Mars, the requirement for landing during the polar spring or summer, when the landing site is ice free and in 
sunlight, and the requirement of the Discovery DRM process that the mission must be launched before December 
2016.  Combining these requirements with the orbital mechanics and desire for minimizing both the launch energy 
(C3) and the arrival energy at Mars resulted in a launch window centered around March 1, 2016.  

Orbital mechanics dictates that low-energy trajectories from Earth to Mars occur with a periodicity of 
approximately 780 days, the synodic period of Mars.  The launch opportunities in 2018 and 2020 also allow landing 
during the southern polar summer, albeit with a somewhat shorter period of landed operations before the beginning 
of southern hemisphere autumn.  However, while the flexibility of choosing a type-I trajectory or the longer type-II 
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trajectory allows some choice of arrival time and asymptote, not all Earth-Mars launch opportunities will allow 
arrival at the southern polar regions during the spring or summer. 

Nevertheless, the spacecraft design will also have uses for Mars exploration launch windows that do not allow 
summer landing at the pole.  Although the polar geyser mission was the particular mission concept analyzed, the 
hopper design is not limited to polar exploration, and could be used to explore many other locations on Mars.  The 
ability to make multiple rocket-powered hops from an initial landing site to a science region of interest would give 
the ability to traverse far more rugged terrain than any previous missions, and could enable exploration of a large 
number of regions previously inaccessible to landers and rovers.18,19 

VI. Conclusions 
A study for a design reference mission for a Discovery-class spacecraft, the “Mars Geyser Hopper,” was done, 

with the objective to clarify the issues involved in the integration of an Advanced Stirling Radioisotope Generator 
(ASRG) power source onto a mission with a planetary surface mission.  

The Geyser Hopper mission would land a spacecraft capable of making at least two “hops,” of distance 2 km and 
100 meters, after landing on the Martian South Pole. The lander would characterize the landforms at the geyser 
region of Mars, and then, after a 20-month winter-over stay on the South Pole, the science instrument would be 
capable of studying one of the most fascinating phenomena in the polar regions of Mars, the geysers that appear near 
the South Pole in the Martian spring when the temperatures raise.  The use of the ASRG power source is an enabling 
technology for this mission, allowing an adequate power supply despite low sun angles in the polar regions at the 
times of interest, and a period of no sunlight over the nearly year-long polar winter.  In addition, the provision of 
waste heat rejected by the thermal radiators on the power system allows the spacecraft to avoid being frozen under 
the seasonal polar ice. 

In addition to being the first spacecraft to reach the pole of another planet, emulating on Mars the 
accomplishments of Amundsen and Scott on Earth, and conducting science operations to investigate and understand 
the polar landforms, the mission will investigate the south polar carbon-dioxide geysers, a phenomenon unique to 
Mars.  High-definition color movies of the geysers in action will be one of the most dynamic planetary mission 
results ever, with an unrivaled public engagement factor. 

The estimated cost of the mission is $350M, not including the launch, ASRG, and planetary protection costs, 
which meets the constraints of the Discovery-mission life-cycle cost cap of no more than $425M not including the 
GFE or launch cost.  The estimated launch in March of 2016, with landing in October 2016, meets the Discovery 
requirement of a 2016 launch. 

The hopper concept analyzed could also be used for exploration missions other than the polar geyser observation 
mission discussed here.  The ability to make multiple rocket-powered hops from an initial landing location to a 
science region of interest would be valuable across a large range of terrain on Mars, as well as elsewhere in the solar 
system, and would demonstrate a new form of rover with the ability to traverse far more rugged terrain than any 
previous missions, a mission concept that would be applicable to exploration of many planets and moons. 
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